skip to main content


Search for: All records

Creators/Authors contains: "Kim, Hyeonghun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Over the two decades, amorphous oxide semiconductors (AOSs) and their thin film transistor (TFT) channel application have been intensely explored to realize high performance, transparent and flexible displays due to their high field effect mobility (μFE=5-20 cm2/Vs), visible range optical transparency, and low temperature processability (25-300 °C).[1-2] The metastable amorphous phase is to be maintained during operation by the addition of Zn and additional third cation species (e.g., Ga, Hf, or Al) as an amorphous phase stabilizer.[3-5] To limit TFT off-state currents, a thin channel layer (10-20 nm) was employed for InZnO (IZO)-based TFTs, or third cations were added to suppress carrier generations in the TFT channel. To resolve bias stress-induced instabilities in TFT performance, approaches to employ defect passivation layers or enhance channel/dielectric interfacial compatibility were demonstrated.[6-7] Metallization contact is also a dominating factor that determines the performance of TFTs. Particularly, it has been reported that high electrical contact resistance significantly sacrifices drain bias applied to the channel, which leads to undesirable power loss during TFT operation and issues for the measurement of TFT field effect mobilities. [2, 8] However, only a few reports that suggest strategies to enhance contact behaviors are available in the literature. Furthermore, the previous approaches (1) require an additional fabrication complexity due to the use of additional treatments at relatively harsh conditions such as UV, plasma, or high temperatures, and (2) may lead to adverse effects on the channel material attributed to the chemical incompatibility between dissimilar materials, and exposures to harsh environments. Therefore, a simple and easy but effective buffer strategy, which does not require any additional process complexities and not sacrifice chemical compatibility, needs to be established to mitigate the contact issues and therefore achieve high performance and low power consumption AOS TFTs. The present study aims to demonstrate an approach utilizing an interfacial buffer layer, which is compositionally homogeneous to the channel to better align work functions between channel and metallization without a significant fabrication complexity and harsh treatment conditions. Photoelectron spectroscopic measurements reveal that the conducting IZO buffer, of which the work function (Φ) is 4.37 eV, relaxes a relatively large Φ difference between channel IZO (Φ=4.81 eV) and Ti (Φ=4.2-4.3 eV) metallization. The buffer is found to lower the energy barrier for charge carriers at the source to reach the effective channel region near the dielectric. In addition, the higher carrier density of the buffer and favorable chemical compatibility with the channel (compositionally the same) further contribute to a significant reduction in specific contact resistance as much as more than 2.5 orders of magnitude. The improved contact and carrier supply performance from the source to the channel lead to an enhanced field effect mobility of up to 56.49 cm2/Vs and a threshold voltage of 1.18 V, compared to 13.41 cm2/Vs and 7.44 V of IZO TFTs without a buffer. The present work is unique in that an approach to lower the potential barrier between the source and the effective channel region (located near the channel/dielectric interface, behaving similar to a buried-channel MOSFET [9]) by introducing a contact buffer layer that enhances the field effect mobility and facilitates carrier supply from the source to the effective channel region. 
    more » « less
  2. Polymeric sensors on fabrics have vast potential toward the development of versatile applications, particularly when the ready-made wearable or fabric can be directly coated. However, traditional coating approaches, such as solution-based methods, have limitations in achieving uniform and thin films because of the poor surface wettability of fabrics. Herein, to realize a uniform poly(3,4-ethylenedioxythiophene) (PEDOT) layer on various everyday fabrics, we use oxidative chemical vapor deposition (oCVD). The oCVD technique is a unique method capable of forming patterned polymer films with controllable thicknesses while maintaining the inherent advantages of fabrics, such as exceptional mechanical stability and breathability. Utilizing the superior characteristics of oCVD PEDOT, we succeed in fabricating blood pressure– and respiratory rate–monitoring sensors by directly depositing and patterning PEDOT on commercially available disposable gloves and masks, respectively. Those results are expected to pave efficient and facile ways for skin-compatible and affordable sensors for personal health care monitoring. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)